
H2Cloud: Maintaining the Whole Filesystem in an Object
Storage Cloud

Minghao Zhao
Tsinghua University

zhaominghao.thu@gmail.com

Zhenhua Li
Tsinghua University

lizhenhua1983@tsinghua.edu.cn

Ennan Zhai
Yale University

ennan.zhai@gmail.com

Gareth Tyson
Queen Mary University of London

gareth.tyson@qmul.ac.uk

Chen Qian
University of California, Santa Cruz

cqian12@ucsc.edu

Zhenyu Li
ICT, CAS

zyli@ict.ac.cn

Leiyu Zhao
Tsinghua University
zhaolythu@gmail.com

ABSTRACT

Object storage clouds (e.g.,Amazon S3) have become extremely pop-
ular due to their highly usable interface and cost-effectiveness. They
are, therefore, widely used by various applications (e.g.,Dropbox) to
host user data. However, because object storage clouds are flat and
lack the concept of a directory, it becomes necessary to maintain file
meta-data and directory structure in a separate index cloud. This
paper investigates the possibility of using a single object storage
cloud to efficiently host the whole filesystem for users, including
both the file content and directories, while avoiding meta-data loss
caused by index cloud failures. We design a novel data structure,
Hierarchical Hash (or H2), to natively enable the efficient mapping
from filesystem operations to object-level operations. Based on H2,
we implement a prototype system, H2Cloud, that can maintain
large filesystems of users in an object storage cloud and support
fast directory operations. Both theoretical analysis and real-world
experiments confirm the efficacy of our solution: H2Cloud achieves
faster directory operations than OpenStack Swift by orders of mag-
nitude, and has similar performance to Dropbox but yet does not
need a separate index cloud.

CCS CONCEPTS

• Information systems → Cloud based storage; • Networks

→Cloud computing; • Software and its engineering→Cloud
computing;

1 INTRODUCTION
Recent years have seen enormous growth in the use of object stor-
age clouds, such as Amazon S3, OpenStack Swift and AliyunOSS [1].
The growth is largely due to their highly usable nature (i.e., the
simple flat data object operations like PUT, GET and DELETE), as well

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225083

as their cost-effectiveness (i.e., low unit price of storing/accessing
data). As a result, they have been widely used by various applica-
tions (e.g., Dropbox, Netflix and Airbnb) to host user data. Their
simplicity, however, is also a weakness, as it forces users to trans-
late familiar POSIX-like [46] file directory transactions into flat
operates. Consequently, applications wishing to use file-based ab-
straction are required to build a secondary sub-system that can
map a hierachical filesystem into the flat object store offered. This
is due to the functional gap between the flat object storage cloud
and hierarchical directory structures. To date, no object storage sys-
tems can perform functional mappings from (relatively complex)
filesystem operations to simple object-level operations natively.

An example application performing such mappings is modern
cloud storage services (e.g., Dropbox, Google Drive, iCloud Drive
and Microsoft OneDrive), which all tend to provide a hierarchical
full-fledged filesystem to their users. Specifically, they usually sup-
port POSIX-like file and directory operations such as READ, WRITE,
MKDIR, RMDIR, MOVE, LIST, and COPY. The object storage platforms
that cloud storage services rely on, however, only provide flat op-
erates (i.e., PUT, GET and DELETE). Therefore, mainstream cloud
service providers like Dropbox are required to use two clouds to
host a user’s file content and directories separately [10, 24, 25],
i.e., an object storage cloud (like Amazon S3 and more recently
Magic Pocket [19]) and a dedicated index cloud (mostly built on
top of Amazon EC2 and EBS [51], where EBS is responsible for
automatically snapshoting EC2 instances).

The abovementioned two-cloud architecture, therefore, incurs
additional cost and effort for achieving high data reliability and
scalability as it is necessary to maintain two sub-systems. For exam-
ple, Dropbox, which does offer filesystem operations [2, 19], needs
enormous additional, disparate efforts to achieve these two prop-
erties for maintaining the directories on top of Amazon EC2 and
EBS. Otherwise, the filesystem of every user will be put at risk of
getting lost or corrupted [35, 57]. And it is generally taken that such
risks are highly related to reliability and scalability problems inside
the index cloud [11, 13] 1. Hence, we pose a challenging question:
Can we use an object storage cloud to efficiently host both the file

1This is potentially the main reason why Dropbox hopes to build its own data centers
and network infrastructures to manage its index [55].

ICPP 2018, August 13–16, 2018, Eugene, OR, USA M. Zhao, Z. Li, E. Zhai et al.

(a) (b) (c)

Figure 1: (a) Cumulus backups the filesystem to an object storage cloud usingCompressed Snapshots; (b) As to ConsistentHash,

files are distributed to object storage servers according to the hash values of their full file paths; (c) For Dynamic Partition, the

filesystem is partitioned to a few index servers and an object storage cloud.

content and directories? If the answer is positive, we can re-take
advantage of the object storage cloud to automatically provide high
reliability and scalability for directories without additional efforts.
As for Dropbox, the application instances working on Amazon EC2
virtual machines (VMs) would then become stateless (since they do
not need to maintain the meta-data for users any more), and thus
can easily scale and never be subject to meta-data loss/corruption
problems. Besides, there will be no need to employ Amazon EBS
for VM snapshots.

Most current cloud storage services do not publish their technical
details. However, we wonder whether there are any solution-based
publicly-available techniques that can answer our question. To this
end, we analyze a variety of existing solutions (as elaborated in §2)
and summarize the major potential solutions as follows (meanwhile
demonstrated in Figure 1):

• Compressed Snapshots. Vrable et al. proved it feasible to backup

users’ filesystems to an object storage cloud by developing Cu-
mulus [49]. Cumulus flattens the directories to a linear list, packs
the whole filesystem of a user to a Compressed Snapshot, and
puts it in an object storage cloud, as in Figure 1a. Obviously,
performing filesystem operations (either file access or directory
operations) on Compressed Snapshot is extremely slow.

• Consistent Hash with a file-path DB. Consistent Hash [20] is
adopted by OpenStack Swift to implement a “pseudo filesystem.”
As in Figure 1b, to determine the position of a file, it calculates
the hash value of the full file path and looks it up in a consistent
hashing ring [5]. Thus, any operation that needs to traverse or
change the directory structure has to be performed across all files
in the directory, thus leading to poor efficiency. In OpenStack
Swift, an SQL-style file-path database is utilized to boost LIST
and COPY operations, but the effect turns out fairly limited.

• Dynamic Partition with a separate index. Adopted by modern
distributed storage systems like Ceph [52, 53] and Panasas [54],
Dynamic Partition keeps the directories in a few index servers
and strategically partitions the directories for load balance, as
illustrated in Figure 1c. This enables efficient directory oper-
ations. Meanwhile, each leaf node in the directory tree refers
to the content of a file in the object storage cloud. However, a
separate index cloud is required to host the directories.

Figure 2: H2 utilizes NameRings to preserve and exploit the

filesystem hierarchy in an object storage cloud.

In general, we find none of these existing solutions satisfy our goal
of efficiently maintaining the whole filesystems of users in an object
storage cloud. To achieve this goal, we design a novel data struc-
ture, Hierarchical Hash (or H2), to enable efficient mappings from
filesystem operations to object-level operations without requiring
a separately managed indexing and mapping service. Based on H2
we implement a cloud storage system, H2Cloud, that can main-
tain large filesystems of users in an object storage cloud. H2Cloud
possesses two important properties: 1) Files and directories are
all stored as objects, and no extra index or database is required.
Thus, H2Cloud significantly simplifies the system management and
reduces the operational cost. 2) H2Cloud supports fast filesystem
operations especially for the directory operations. For example, typ-
ically, LISTing 1000 files costs just 0.35 second and COPYing 1000
files costs ∼10 seconds.

As demonstrated in Figure 2, in H2 every directory corresponds
to a NameRing—a data structure that maintains a list of direct
children (i.e., only including current-level files and sub-directories)
under the directory. Each NameRing is linked in a hierarchy that
represents the directory structure of the filesystem being stored.
Importantly, the storage of these data structures is underpinned by
a single, larger consistent hashing ring using a namespace-decorated

method, so the overall load balance of objects is automatically kept.
H2 allows the directory structure to be natively represented

within the object store. Instead of hashing the full path (as what
Consistent Hash does in OpenStack Swift), H2 hashes each directory
name along the path in a level-by-level manner when accessing a

H2Cloud: Maintaining the Whole Filesystem in an Object Storage Cloud ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Table 1: A quantitative comparison of representative data structures (including our proposedH2) for hosting users’ filesystems.

Here N is the total number of files in the filesystem, d denotes the depth of an accessed file in the directory tree (d is typically

quite small, e.g., lying between 1 and 19), n represents the number of files stored in a certain directory, andm is the number of

direct children under a certain directory.

Data System System Time Complexity for
Structure Architecture Scalability File Access MKDIR RMDIR, MOVE LIST COPY

Compressed Snapshot Single Cloud Yes O (N) O (1) O (N) O (N) O (N)
Content Addressable Storage (with Multi-Layer Index) Single Cloud Yes O (1) O (N) O (N) O (m) O (N)

Consistent Hash (CH) Single Cloud Yes O (1) O (1) O (n) O (N) O (N)
CH with a File-Path DB (OpenStack Swift) Single Cloud Limited O (1) O (1) O (n) O (m · loдN) O (n + loдN)

Single Index Server Two Clouds Limited O (d) O (1) O (1) O (m) O (n)
Static Partition Single Cloud No O (d) O (1) O (1) O (m) O (n)

Dynamic Partition (DP) Two Clouds Yes O (d) O (1) O (1) O (m) O (n)
DP on Shared Disk Single Cluster Constrained O (d) O (1) O (1) O (m) O (n)

Hierarchical Hash (H2) Single Cloud Yes O (1) or O (d) O (1) O (1) O (1) or O (m) O (n)

file with an absolute path. Specifically, H2 uses the name of a Level-
1 (L1) directory to locate the NameRing that includes all names of
the direct children under the L1 directory. Then, H2 uses the name
of an L2 directory to locate the NameRing of the L2 directory. It
repeats until the desired file is reached. In contrast, for a file access
with a relative path H2 achieves the optimal O (1) efficiency, since
directly hashing the provided relative path will get the location of
the targeted file in the consistent hash ring. Because the filesystem
hierarchy is preserved and explored, H2 achieves high efficiency
especially for directory operations. Theoretical analysis (in Table 1)
clearly indicates the sound performance of H2 in almost all aspects.

In addition, we have developed an open-source prototype system
of H2Cloud based on OpenStack Swift (§4), and conducted com-
prehensive evaluations on the real-world performance of H2Cloud
(§5). Compared with OpenStack Swift, H2Cloud achieves faster
directory operations by orders of magnitude on handling RMDIR,
MOVE, RENAME and LIST for large filesystems. File access and MKDIR
are slower than those of OpenStack Swift 2, but still faster than
Dropbox. Compared with Dropbox, H2Cloud achieves similar per-
formance in all aspects without using a separate index cloud.

2 RELATEDWORK

As we have noticed in §1, a suitable data structure is the key to
efficiently maintaining users’ filesystems in an object storage cloud.
Thus, our target problem is reduced to how to construct an appropri-
ate data structure to satisfy our goal. In this section, we investigate a
variety of representative data structures coupled with relevant stor-
age systems, and discuss why they are not suited to our goal. Also,
we briefly present how our proposed H2 data structure outperforms
the existing ones at the end. Particularly, the major properties of
all investigated data structures (including H2) are listed in Table 1
for a quantitative comparison.

Compressed Snapshot and Cumulus. Using Compressed Snap-
shots (a Snapshot is a read-only view of the filesystem at a certain
point), Cumulus packs and compresses the content of files to several
TAR files (named Segments), and meanwhile flattens the directories
to a one-dimensional (linear) list called the Metadata log [49] (as

2For file access and MKDIR operations, round trip time (RTT) is the main factor to
affect the user experience since RTT dwarfs their operation time. Hence, it is in fact
unnecessary for us to further accelerate the two operations by increasing the design
complexity.

shown in Figure 1a). The Segments and Metadata logs collectively
constitute the Compressed Snapshot, which is then stored in the
object storage cloud.

Because Cumulus uses Metadata logs to snapshot the filesystem,
it performs well when retrieving the whole filesystem from the
object storage cloud. However, it gets extremely poor performance
when accessing a specific file, since it has to traverse all the Meta-
data logs in the Compressed Snapshot so as to locate a file in the
filesystem. As a result, the time complexity for random file access
is as high as O (N).

Accordingly, the complexities of most directory operations are
also O (N), as indicated in Table 1. For the above reasons, Cumulus

is able to backup a filesystem but is not competent to maintain a “real”

filesystem that frequently changes.

Content Addressable Storage (CAS). Foundation [39] and Venti
[37] are storage systems built using a content addressable approach,
where the data locations are tightly coupled with the data con-
tent [38, 48]. Typically, a file (block) is located by the hash value of
its content. Camlistore [6] extends the flexibility of traditional CAS
architecture and achieves hierarchical structure among the files,
by packing the hash values of lower-level files or file blocks into
additional data blocks (called pointer blocks) which are also written
to the storage devices. CAS is especially efficient for file access
operation, as simply hashing the file content will obtain its location,
which result inO (1) time complexity. However, a file (block) cannot
be modified without changing its location, and even simple directory

operations like MKDIR and RMDIR require reconstructing the whole

hierarchical index, which will result in O (N) complexity. Thus, like
Cumulus, it is also particularly suitable for backup and data sharing

systems with few file modifications.

Consistent Hash (CH). Owing to its high scalability, self-organi-
zation, and load balancing, Consistent Hash has been widely used
in flat object storage clouds such as OpenStack Swift [7] and Aliyun
OSS [1]. Nonetheless, it does not support a hierarchical filesystem
abstraction. Tomitigate this shortcoming, OpenStack Swift suggests
to implement a pseudo filesystem based on Consistent Hash (see
Figure 1b). In other words, it mimicks the filesystem structure by
treating the file path as a discrete string that can be hashed. This
idea is also adopted by Aliyun OSS, CalvinFS [47], Lazy Hybrid [4],
Cassandra [21] and some large-scale key-value storage systems

ICPP 2018, August 13–16, 2018, Eugene, OR, USA M. Zhao, Z. Li, E. Zhai et al.

Figure 3: OpenStack Swift maintains an extra file-path DB

to boost LIST and COPY operations with binary search.

such as Amazon’s Dynamo [8] and Facebook’s f4 [29]. Recently
perfect hash based index is also proposed [56].

Specifically, by calculating the hash value of the full file path,
Consistent Hash looks a file up in a consistent hashing ring [5]
to determine which object storage server the file is located in, as
depicted in Figure 1b. A benefit of this is that there is no need for
a separate index. On the other hand, the side effect of the pseudo
filesystem lies in that any operation that needs to traverse or change

the directory structure has to be performed across all files in the

directory or the filesystem, thus leading to high (O (n) or evenO (N))
complexity as shown in Table 1.

CH with a File-Path DB and OpenStack Swift. Since CH ex-
hibits poor efficiency on handling LIST and COPY operations, Open-
Stack Swift maintains an extra file-path database (with SQLite or
MySQL) for each user (account) to speed them up; every file corre-
sponds to a record in this file-path DB. Therefore, via binary search
of the DB records, it reduces the time complexities of LIST (from
O (N) toO (m · loдN)) and COPY (fromO (N) toO (n+loдN)) (shown
in Figure 3). Generally, file-path DB provides a feasible approach
in accelerating LIST and COPY operations, and it has been adopted
by some modern cloud filesystems such as CassandraFS [27], Giraf-
faFS [41] and HopsFS [30], which take full advantage of the recently
advanced high performance distributed databases to manage the
file-path (e.g., HopsFS uses NewSQL [31, 44] database for file-path
management). But in spite of this, the achieved time complexities are

still unsatisfactory as for a large system scale (N). In addition, the
usage of DB substantially increases the burden on the storage node
that hosts the file-path DB, and thus compromises the scalability of
the system. Getting rid of the usage of these secondary sub-systems
is a core goal of our work.

Single Index Server and GFS/HDFS. GFS [12] and HDFS [42]
keep a single index server (called namenode in HDFS) separately to
maintain the filesystem for a whole storage cluster. The centralized
architecture results in limited scalability, which is probably why GFS
and HDFS are not used by mainstream cloud storage services.

Static Partition and AFS. The Andrew File System (AFS [14, 15])
statically partitions different users’ files into different object storage
servers. Although clumsy in dynamic situations, it has been popular
in certain scenarios for its extreme simplicity. For example, Carnegie
Mellon University uses AFS to provide 2-GB storage space for every
new student when they are enrolled. This method is also adopted
by some light-weight filesystems such as LOCUS [36], NFS [34],
Coda [40], MapReduce-R [43] and XtreemFS [18]. But obviously,
statically partitioned files and directories have the negative effect

on filesystem operations with different partitions involved, and thus

scalability cannot be expected here.

Dynamic Partition (DP). To address the limitations of Static Parti-
tioning, a straightforward method is to keep multiple index servers,
monitor the file access workload, and dynamically partition the
directories into the index servers with sophisticated load-balance
algorithms. DP has been implemented in many modern storage sys-
tems like Ceph [52], PanFS[54], SmartStore [16, 17], OrangeFS [28],
GIGA+ [33], GlobleFS [32] and PROMES [26]. Moreover, DP is
highly likely to be used by Dropbox, which is indicated by the
experiment results in §5.3. As mentioned in §1, DP enables efficient

directory operations but requires a separate index.

DP on Shared Disk. It is worth noting that some systems (e.g.,
BlueSky [50], xFS [45] and SCFS[3]) implement DP with a different
architecture, i.e., on Shared Disk. They build only one shared-disk
storage cluster that supports both the DP middleware and underly-
ing file block storage. However, this architecture requires strong
consistency among the shared disks, so partition tolerance is com-
promised according to the classical CAP theorem. Thus, DP on

Shared Disk is considered unsuitable for distributed cloud storage sys-

tems which usually sacrifice strong consistency for partition tolerance.

ComparisonwithH2 andH2Cloud.As illustrated in Table 1, H2
generates sound performance in almost all aspects. Particularly for
LIST operations, with the help of NameRing, the time complexity
is O (1) when the user only needs to list the names of the direct
children under a directory. Otherwise (when the user wants to list
more detailed information), the time complexity is O (m). For file
access, H2 provides both an internal, quick method and an external,
(user-friendly) regular method; the former can be accomplished in
O (1) time and the latter in O (d) time (detailed in §3.2). Compared

with H2, any other data structure is subject to crucial performance

limitations in at least one aspect. Therefore, when we implement the
H2Cloud system based on H2, H2Cloud supports fast filesystem
operations especially for the directory operations.

3 DESIGN OF H2

As the core design of our H2Cloud system, we propose a novel data
structure, Hierarchical Hash (or H2), which aims at mapping the
hierarchical file paths into a representation specific to object-level
operations (called NameRing), thus enabling us to maintain this
representation in an object storage cloud. In this section, we first
elaborate on the design of the H2 data structure (§3.1). Then, we
describe the coupled file access algorithm (§3.2), and the NameRing
maintenance protocol (§3.3).

3.1 H2 Data Structure

In designing H2, we aim to preserve and exploit the hierarchical
information implied in the file path, and meanwhile keep the load
balance of objects in an object storage cloud. Specifically, our goal is
achieved in three steps as demonstrated in Figure 2. Suppose a user
Alice wants to maintain her Ubuntu filesystem in an object storage
cloud. First of all, we translate each full directory path or full file
path in Alice’s filesystem to a namespace-decorated relative path. For
example, in Figure 4(a) the directory path /home/ubuntu is trans-
lated to N94::ubuntu, and the file path /home/ubuntu/file1 is
translated to N02::file1. Here N94 represents a certain namespace,
and it is the universally unique identifier (UUID) [23] of the corre-
sponding directory path (/home/). More in detail, because /home/

H2Cloud: Maintaining the Whole Filesystem in an Object Storage Cloud ICPP 2018, August 13–16, 2018, Eugene, OR, USA

(a) (b) (c)

Figure 4: An example of the H2 data structure, showing how Alice’s filesystem is maintained in an object storage cloud. The

left sub-figure (a) is the namespace-decorated filesystem tree, the middle sub-figure (b) plots the corresponding NameRings

(note that a regular file like /bin/cat does not possess a NameRing), and the right sub-figure (c) represents the single, larger

consistent hashing ring on which the multiple NameRings are built.

is the 6th directory created by the 1st storage node at the UNIX
timestamp 1469346604539, this directory will be given a UUID
06.01.1469346604539 and thus N94 = 06.01.1469346604539.
In practice, the sequence numbers (e.g., 6th and 1st) of directories
and storage nodes are assigned based on specific system implemen-
tations. With the above efforts, every directory in Alice’s filesystem
corresponds to a unique namespace.

Second, each namespace (directory) possesses a NameRing, which
is the data structure we use to maintain a list of all files in the direc-
tory. Specifically, the NameRing goes through all the direct children
of the directory by recording their (directory or file) names. For-
mally, a NameRing comprises a list of tuples looking like

(child0, t0), (child1, t1), · · · , (childm−1, tm−1),
where childi is the file or directory name of the i-th direct child
of the corresponding directory,m is the number of direct children,
and ti is a UNIX timestamp representing a creation or deletion time.
For example in Figure 4(b), the NameRing of the namespace N05
goes through cat, bash, and nc. Hence with the help of NameRing,
a LIST operation on N05 (representing the directory /bin) can be
executed inO (1) time when Alice only needs to list the names of the
direct children under /bin. Further, when Alice wants to list more
detailed information of the direct children, the time complexity
increases to O (m) (m = 3 for /bin) since we have to access the
specific object that stores the information of each direct child of
/bin using the NameRing. As a result, NameRing preserves the
hierarchical information of a user’s filesystem, and every directory
operation can be translated to NameRing updates in H2.

Third, each directory and its NameRing are stored in a single,
larger consistent hashing ring as an object, respectively. Note that
in Figure 4(c), only a part of directory objects are drawn to make
the figure tidy. At the moment, we use the consistent hashing ring
of OpenStack Swift which keeps sound load balance for the data
objects. Therefore, all the objects organized by the H2 data structure
are also evenly distributed across storage servers.

3.2 File Access

H2 provides two methods to access a file, including 1) a quick
method through a (namespace-decorated) relative path and 2) a

regular method through a common full file path. First, given a rela-
tive path like N02::file1, accessing the file can be accomplished
in O (1) time since we can directly hash the relative path to locate
the file in the consistent hashing ring. Since a common user can
hardly remember or understand the namespace string (e.g., N02),
this quick method is mainly used by the system’s internal opera-
tions. Second (as a user-friendly access method), given a full file
path with a directory depth of d (like /home/ubuntu/file1 whose
d = 3), H2 needs to locate the file level by level along d NameRings,
so the time complexity is O (d).

3.3 NameRing Maintenance

As noticed in §3.1, each NameRing is linked in a hierarchy that
represents the directory structure of the filesystem being stored.
Therefore, when a directory is updated due to the creation of a new
child or the deletion of an existing child, its NameRing should also
be updated (by adding or removing a tuple) accordingly. Further,
more complex directory operations like RMDIR, MOVE, and COPY are
also achieved through NameRing maintenance.

3.3.1 A Strawman Solution. An ideal and straightforward way
for NameRing maintenance is to construct a ring-structured syn-

chronous protocol that updates any involved NameRings among
each node in real time. Nevertheless, such a strawman solution
is not suitable for real-world object storage cloud systems for the
following two reasons. First, while a synchronous protocol is able
to offer stronger consistency, it provides poor data availability. In
reality, mainstream object storage cloud systems tend to require
better data availability rather than consistency. OpenStack Swift,
for example, only provides eventual consistency to its customers in
order to ensure high data availability. Second, synchronous updates
need distributed locks [22] to enable the serialization of filesys-
tem operations, which inevitably bring performance bottlenecks to
filesystem operations on those frequently accessed directories.

3.3.2 NameRing Maintenance Protocol. Due to the above two-
fold drawbacks of the strawman synchronous protocol, we propose
a practical asynchronous protocol for effective NameRing main-
tenance in H2. Our proposed NameRing maintenance protocol
consists of two phases.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA M. Zhao, Z. Li, E. Zhai et al.

Phase 1: For every filesystem operation that changes NameRings,
our protocol needs to submit a patch, which is a log file recording
the update information (e.g., file deletion). A submitted patch is as-
signed a UUID with the targeted NameRing concatenating the node
number that releases it, as well as the incremental patch number. For
example, N97::/NameRing/.Node01.Patch03 indicates the third
patch of the namespace N97’s NameRing, which has been submitted
by the node of No. 01.

Phase 2: After patches are submitted successfully, these patches
are applied to the affected NameRing(s) in the following two steps:
1) patches merging within the node who submits them, and 2)
coordination among all the nodes.

• In the first step, patches within each node are arranged as a
link-list. Specifically, each updated NameRing is associated with
a list of unmerged patches, starting with the patch No. 0 (whose
absence indicates that no other version exists in this node). The
intra-node merging process starts with the No. 0 patch and
merges the patch with its successor in the linked list by first
fetching a patch, then getting its successor, and finally merging
the two patches. After all the patches are merged into one, we
merge this “big” patch into the NameRing with the merging
algorithm (detailed later). Consequently, each node has its local
(but not necessarily consistent) version for each NameRing.

• In the second step, different nodes need to coordinate the up-
dates, so that each node can eventually have the same NameRing
views with other nodes. We achieve this goal by gossip flooding.
Specifically, each node propagates its update to other nodes us-
ing a gossip protocol [9]. Each gossip contains a list of tuples
of (Ni ,Hj , tk), which indicate that the local version of NameR-
ing Ni in node Hj has been updated at the timestamp tk . Upon
receiving a gossip, this node fetches the updated version and
merges it into its local version, and then puts it forward. In
addition, the propagation loop-back is avoided by timestamp
comparison—aborting forwarding if the local timestamp is equal
or bigger than the timestamp in the local NameRing, as this case
indicates that the local version is the newest among the whole
system. By this way, patches submitted from other nodes can
be successfully synchronized.

NameRing merging algorithm. As a central part of our asyn-
chronous NameRing maintenance protocol, the NameRing merging
algorithm merges a patch into its targeted NameRing. In general,
when a patch is intended to be merged into a NameRing NA, it is
firstly converted into another virtual NameRing NB , given that a
patch is in the same format as a NameRing. Afterwards, the algo-
rithm merges the two NameRings NA and NB by iterating on each
child of NB . Specifically, when a child belongs to both NameRings,
the one that has a larger timestamp will override the other. Other-
wise (i.e., in which case the child only appears in the patch but does
not exist in the previous NameRing NA), the child will be added to
the new output NameRing NC .

Note that there are only the aforementioned two actions (i.e.,
inserting and overriding) for the children in a patch to be written
into their corresponding NameRing, whereas no child is removed
from the NameRing in the patch-NameRing merging phase. In
fact, when a file or folder is expected to be deleted from a certain

directory, we send a patch to this directory NameRing. In this patch,
a tag Deleted is appended to the corresponding tuple (childi , ti)
and then the tuple looks like (childi , ti , Deleted). This tuple will
override and replace the original one in the targeted NameRing
afterwards (as it has a larger timestamp), such that the tagged tuple
(childi , ti , Deleted) will appear in the NameRing. We leave the
work of “really" removing the tuple from the NameRing until this
NameRing is in use (e.g., executing operations such as MOVE and
LIST). We make this design not only for protocol simplification,
but also for concurrency avoidance (detailed later).

3.3.3 Concurrency Avoidance. Twomethods are adopted to avoid
the potentially accompanied concurrency problem. (a) Fake opera-
tion. For some certain operations, we extend the tuple in a NameR-
ing to enable fake operations. For example, in the case of file re-
moval, we just append a tag Deleted instead of deleting this tuple
from the NameRing, i.e., the so-called “fake deletion". In this way,
even if this removal operation causes a concurrency problem, the
problem can still be easily fixed later by first checking the corre-
sponding tag and then updating the stage of the file, when executing
operations such as MOVE and COPY. (b) Blocking. When inserting
a large file into the filesystem, it is required to generate a UUID
and the corresponding metadata for this newly-added file, put the
file into the cloud storage through the I/O stream interface, and
finally send a patch to modify its parent directory’s NameRing. As
the file streaming operation takes longer time than directory oper-
ations, all the other merging procedures are blocked until the file is
fully written into the storage interface and the patch is successfully
submitted.

4 IMPLEMENTATION OF H2CLOUD

Based on the design of H2 in §3, we implement an open-source
prototype system, named H2Cloud, on top of OpenStack Swift. Our
source code is written in the Go language including 14000 lines
and is publicly available at http://github.com/h2cloud/h2cloud. This
section first presents an overview of the H2Cloud system, and then
describes the implementation details of its important components.

4.1 System Overview

As depicted in Figure 5, H2Cloud is built on top of an object stor-
age cloud, serving external PC/mobile clients or web requests. Our
current prototype adopts OpenStack Swift as the underlying object
storage cloud because it is a widely used, open-source, and the de
facto standard of state-of-the-art systems. H2Cloud provides filesys-
tem services to the users in the form of web services, i.e., through a
series of web APIs. Accordingly, the users can access H2Cloud via a
web browser or a native client, by sending HTTP messages to and
receiving HTTP messages from the H2Layer, which comprises a
number of H2Middlewares (detailed in §4.2). In brief, H2Middleware
embodies the H2 data structure and the coupled algorithms pre-
sented in §3. Typically, each H2Middleware wraps an OpenStack
Swift proxy server, while other mappings are also acceptable. Like
OpenStack Swift proxy servers, multiple H2Middlewares are de-
ployed to distribute workloads for load balancing, or to reduce
the service delay when the object storage cloud is geographically
distributed across several data centers.

H2Cloud: Maintaining the Whole Filesystem in an Object Storage Cloud ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Figure 5: System architecture of

H2Cloud.

Figure 6: Components within an

H2Middleware.

 100

 1000

 10000

 100000

 1x106

10 100 1000 10000 100000

O
pe

ra
tio

n
T

im
e

(m
s)

Number of Files in the Directory (n)

OpenStack Swift
H2Cloud
Dropbox

Figure 7: Operation time for MOVE
and RENAME.

4.2 H2Middleware

As the key component of H2Cloud, H2Middleware implements the
H2 data structure, the file access algorithm, and the NameRing
maintenance protocol. For the users, H2Middleware serves as a
proxy that provides web APIs for filesystem operations. For the
object storage cloud, H2Middleware acts as a client that invokes
PUT, GET, DELETE, and other primitives.

Figure 6 presents the components within an H2Middleware.
Specifically, the Inbound API and Outbound API modules provide
basic utilities to establish HTTP connections with user clients and
the object storage cloud. The H2 Lookup module executes the file
access algorithm with a (namespace-decorated) relative path or a
common full file path. The Formatter module “stringifies” the con-
tent of different types of data into string-style objects, so that these
data can be easily hosted in the object storage cloud. The NameR-
ing Maintenance module is responsible for submitting patches and
merging patches into their corresponding NameRings, and it im-
plements the NameRing maintenance protocol (§3.3). This module
is further made up of several sub-modules, including the NameR-
ing File Descriptor, the File Descriptor Cache and the Background
Merger, to coordinate the merging procedure and execute the merg-
ing algorithm. In addition, there are a few other modules inside an
H2Middleware for inter-communications and system monitoring.

4.3 Inbound API and Outbound API

As shown in Figure 6, the Inbound API and Outbound API mod-
ules handle the incoming and outgoing HTTP messages of an
H2Middleware, respectively. In particular, Inbound API is embod-
ied by an HTTP server that provides three types of web APIs: 1)
Account APIs which create or delete an account for a certain user;
2) Directory APIs which traverse or modify the structure of one
or more directories; and 3) File Content APIs which provide READ
and WRITE accesses to files. Similarly, Outbound API is embodied
by another HTTP server that interacts with the underlying object
storage cloud through PUT, GET, DELETE and other primitives.

4.4 Formatter

While an object storage cloud hosts all types of data in the form
of objects, certain types of data (e.g., our devised NameRings and
NameRing patches) are not suited to directly becoming objects.
Thus, we make use of “stringifying” to convert every type of data
to string-style objects. This task is accomplished by the Formatter
module before any type of data is put in the object storage cloud.

In the filesystems maintained by H2Cloud, there are mainly three
types of data objects: files, directories, and NameRings (together
with the NameRing patches). They are converted to strings in the
following three ways: 1) Files can be taken as either ASCII or bi-
nary strings in themselves; 2) Directories are converted to ASCII
strings corresponding to their namespaces; and 3) NameRings are
represented in lists of tuples(refer to §3.1). These tuples are alpha-
betically sorted by their names and packed to ASCII strings one
after another. As for a NameRing patch, it is firstly converted to the
form of a normal NameRing and then represented in lists of tuples.

4.5 NameRing Maintenance Module

As described in §3.3, asynchronous update is adopted by H2Cloud
and updating a NameRing is in fact submitting a patch to the sys-
tem. The patch affects the system going through two steps: intra-
H2Middleware merging and inter-H2Middleware synchronization.
In order to achieve this functionality, some mutually cooperative
sub-modules are designed. specifically, each NameRing corresponds
to a unique File Descriptor. It controls the submission, updating and
synchronization of NameRings, as well as invokes the synchroniza-
tion mechanism. All the file descriptors are stored and organized in
the File Descriptor Cache. The Background Merger is responsible
for merging patches in the patch-chain andmerging a patch into the
NameRing automatically, under the direction of the File Descriptor.
In addition, the Gossip Arrangement sub-module is designed for
generating and spreading synchronization information.

5 EVALUATION

Although theoretical analysis in Table 1 has indicated the sound per-
formance of H2 in almost all aspects, this section comprehensively
evaluates the performance of H2Cloud system through real-world
experiments. We also compare the performance of H2Cloud with
those of OpenStack Swift (the state-of-the-art single-cloud solution
using CH with a File-Path DB) and Dropbox (the state-of-the-art
two-cloud solution probably using DP 3).

5.1 Methodology

Wemake a rack-scale H2Cloud (and its underlying OpenStack Swift)
deployment for conducting real-world experiments. The deploy-
ment involves nine HP ProLiant DL380p servers located in the same
IDC rack. Each server is equipped with an 8-core Intel Xeon CPU

3We infer that Dropbox is highly likely to use the Dynamic Partition data structure
from the experiment results in §5.3.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA M. Zhao, Z. Li, E. Zhai et al.

 100

 1000

 10000

 100000

 1x106

10 100 1000 10000 100000

O
pe

ra
tio

n
T

im
e

(m
s)

Number of Files in the Directory (n)

OpenStack Swift
H2Cloud
Dropbox

Figure 8: Operation time

for RMDIR.

 100

 1000

10 100 1000 10000 100000

O
pe

ra
tio

n
T

im
e

(m
s)

Number of Files in the Directory (n)

OpenStack Swift
H2Cloud
Dropbox

Figure 9: Operation time

for LIST

 100

 1000

 10000

 100000

10 100 1000 10000 100000

O
pe

ra
tio

n
T

im
e

(m
s)

Number of Direct Children under the Directory (m)

OpenStack Swift
H2Cloud
Dropbox

Figure 10: Operation time

for LIST

 100

 1000

 10000

 100000

 1x106

10 100 1000 10000 100000

O
pe

ra
tio

n
T

im
e

(m
s)

Number of Files in the Directory (n)

OpenStack Swift
H2Cloud
Dropbox

Figure 11: Operation time

for COPY.

 0

 50

 100

 150

 200

H2Cloud Dropbox OpenStack Swift

O
pe

ra
tio

n
T

im
e

(m
s)

Figure 12: Operation time

for MKDIR.

 0

 50

 100

 150

 200

 250

 0 5 10 15

O
pe

ra
tio

n
T

im
e

(m
s)

Directory Depth (d)

OpenStack Swift
H2Cloud
Dropbox

Figure 13: Operation time

for file access.

 10

 100

 1000

 10000

 100000

10 100 1000 10000 100000

N
um

be
r

of
 O

bj
ec

ts

Number of Files in the Directory (n)

H2Cloud
OpenStack Swift

Figure 14: Number of ob-

jects.

 10

 100

 1000

 10000

 100000

10 100 1000 10000 100000

S
iz

e
of

 O
bj

ec
ts

 (
M

B
)

Number of Files in the Directory (n)

H2Cloud
OpenStack Swift

Figure 15: Size of objects.

@ 2.50 GHz, 32-GB 1600-MHz DDR3 memory, 7×600-GB 15K-RPM
SAS disk storage, and four 1-Gbps Broadcom Ethernet interfaces.
The operating system running on each server is Ubuntu 14.04 LTS
x64. All these servers are connected by a commodity Huawei switch
with 1-Gbps LAN bandwidth and 100-Mbps WAN bandwidth.

In our experiments, we use one of the nine servers (calledNode-0)
to run the OpenStack Keystone service for account/data authentica-
tion; meanwhile, Node-0 plays the role of proxy node in the Open-
Stack Swift system. The other eight servers are used as OpenStack
Swift storage nodes. Among these storage nodes, three replicas are
kept for each data object. In addition, an H2Middleware is hosted
in Node-0—when enabled, we run the experiments with H2Cloud;
when disabled, we run the experiments with OpenStack Swift.

In order to obtain real-world workloads, we invited nearly 150
users from both campuses and companies to host their filesystems
in H2Cloud. Among these invited users, some users’ filesystems are
“light”, i.e., consisting of several shallow directories and hundreds
of files, while the filesystems of the rest of users are “heavy”, i.e.,
including thousands of directories in different depths andmillions of
files. In general, the number of files in a directory ranges from zero
(empty folder) to nearly half a million, and the directory depth range
from zero to more than 20. The users’ manipulations cover most of
the POSIX-like file and directory operations (detailed latter). The file
type also is diversified, including videos and database backups with
the file size of gigabytes (GB), text and configuration files with size
less than one kilobyte (KB), and other file types (e.g., documents and
figures) with a medium file size. Such heterogeneous filesystems
give our experiments abundant variances and generality.

For the experiments with OpenStack Swift, we replay these
H2Cloud users’ workloads by disabling the H2Middleware. Besides,
to evaluate the performance of Dropbox (whose implementation is
invisible to us), we send controlled HTTP requests to the Dropbox
system to replay the workloads. Moreover, since these H2Cloud

users’ filesystem operations cannot fully cover all the desired us-
age scenarios and scales for comprehensive sensitivity analysis,
we also conducted complementary benchmark experiments using
controlled clients (based on the collected real-world workloads).

5.2 Metrics

In our experiment, we mainly focus on the performance of the
filesystems, which ismeasured by the operation time of MOVE, RENAME,
RMDIR, LIST, COPY, MKDIR, and file access. Here operation time de-
notes how long the system needs to process a filesystem operation,
excluding the round trip time (RTT) that is spent delivering HTTP
requests and responses over the Internet.4 We do not take RTT into
account, because 1) it depends on the network environments rather
than our evaluated systems, and 2) it may well dwarf the operation
time of our evaluated systems, thus making our comparison un-
clear and unfair. Afterwards, we evaluate the impact of RTT to the
overall performance of the cloud filesystems. In addition, for file
access operations we only record the lookup time while exclude the
read/write time of the file, in order to avoid the (often dominant)
impact of file size on the file access time. Meanwhile, we examine
the storage overhead (the major system overhead) of H2Cloud in
comparison to OpenStack Swift.

5.3 Experiment Results

MOVE, RENAME and RMDIR. Figure 7 records the operation time of
MOVE and RENAME when the number of files in the directory (n)
varies from 10 to 100,000. We do not distinguish MOVE and RENAME
here since the latter is in fact a special case of the former and thus
has identical performance. Our key finding is that asn exponentially
grows, the operation time for OpenStack Swift also exponentially

4The RTT of Dropbox is estimated by PINGing the relevant Dropbox storage server(s)
in real time, because we are unable to take precise measurements of Dropbox’s com-
munication and data flows. Moreover, this time delay will also be used to evaluate the
influence of RTT to the overall performance of a cloud filesystem.

H2Cloud: Maintaining the Whole Filesystem in an Object Storage Cloud ICPP 2018, August 13–16, 2018, Eugene, OR, USA

increases, while the operation time for H2Cloud and Dropbox is
generally unchanged. The similar phenomenon happens to the op-
eration time of RMDIR, which is illustrated in Figure 8. The above
experiment results are tightly consistent with our theoretical anal-
ysis in Table 1: OpenStack Swift needs O (n) time to execute MOVE
and RMDIR operations, while DP (highly probably for Dropbox) and
H2 only need O (1) time.

LIST and COPY. The operation time of LIST (with detailed informa-
tion of each file) is recorded in Figure 9 and Figure 10. In Figure 9, n
varies from 10 to 100,000, and in Figure 10, the number of direct chil-
dren under the directory (m) varies from 10 to 100,000. As shown
in the above two figures, the operation time of LIST depends onm
rather than n. Also, we observe that OpenStack Swift costs more
time than Dropbox and H2Cloud on handling LIST operations. This
can be directly explained by our complexity analysis in Table 1:
O (m ·loдN) for OpenStack Swift,O (m) for DP, andO (m) for H2. On
the contrary, when dealing with COPY operations the three systems
exhibit quite similar performance, as demonstrated in Figure 11.
This is also consistent with our complexity analysis: O (n + loдN)
for OpenStack Swift, O (n) for DP, and O (n) for H2.

MKDIR and file access. Although OpenStack Swift are poor at han-
dling the above filesystem operations, it is better at handling MKDIR
and file access operations. As depicted in Figure 12, the operation
time for each system to perform MKDIR is almost constant since the
directory created is always empty at that time. OpenStack Swift is,
in fact, the fastest. Both H2Cloud and Dropbox need more time to
make a directory, but their consumed time (between 150 and 200
ms on average) is well acceptable to users.

Moreover, Figure 13 shows how the file access time changes as
the directory depth (d) of an accessed file increase. Given the full
path of a file, OpenStack Swift directly calculates the hash value of
the full path and looks it up in a consistent hashing ring, so its file
access time is stably as low as 10 ms. With regard to H2, it hashes
the file path step by step instead of as a whole, so its file access
time is proportional to d . According to our collected workloads,
the average and maximum directory depths are 4 and 19. Hence in
practice, the file access time in H2Cloud is merely 61 ms in average,
which is even shorter than that of Dropbox.

As for Dropbox, its file access time seems to be constant with
fluctuations according to Figure 13, while theoreticallyO (d) accord-
ing to Table 1. The gap between O (1) and O (d) can be explained
by delving into the working principle of DP (Dynamic Partition,
refer to Figure 1c). Specifically, when the filesystem is partitioned
to a number of index servers, the file access time will be more like
O (d); otherwise, the file access time will be approachingO (1) since
all the d steps for locating a file are usually locally performed in
one index server.

Till now, we have unraveled the time complexities of all kinds
of filesystem operations for Dropbox, and we find that all the time
complexities for Dropbox are basically in line with those for DP
(refer to Table 1). As a result, we infer that Dropbox is highly likely
to be using the DP data structure.

Storage overhead. As H2Cloud is built based on OpenStack Swift,
it inevitably brings storage overhead in terms of both additional
number of objects and extra size of objects. In H2Cloud, each direc-
tory or NameRing corresponds to a separate object, so the number

of objects in H2Cloud is obviously larger than that in OpenStack
Swift, as illustrated in Figure 14. On the other hand, the average
size of a directory object or a NameRing object (less than 1 KB)
is significantly smaller than that of a file object (nearly 1 MB in
average). Hence, as shown in Figure 15, the extra size of objects in
H2Cloud is almost negligible.

The Impact of RTT. In order to know to what extent the RTT
has effect on a typical cloud filesystem, we measure it by PINGing
Dropbox in real time. We set our client at Santa Cruz, California
and find the average latency (measured by PING with 56 data bytes)
between the host and Dropbox is 58 ms (ranging from 24 to 83

ms). We use α =
Round−T r ip T ime

F ilesystem Operation T ime
, the ratio of RTT and

filesystem operation time (i.e., the time duration required for file
access or directory operations), to indicate the influence of RTT
to the overall performance. In terms of directory operations, the
ratio α for H2 stays stable at about 0.2∼0.3 for operations like MOVE,
MKDIR, RMDIR etc., and decreases from 0.2 to a negligibly small
number for operations like LIST and MOVE. As for OpenStack Swift
and Dropbox, the ratio is also within 0.3. This indicates that RTT
does not outweigh the directory operation time, and the directory
operations, compared with RTT, are main factors to determine
the user experience. On the contrary, in terms of the file access
operation, as the depth of a file in the directory tree increases
from 0 to 20, the ratio α decreases from 2.7 to 0.3 for H2; whereas
it fluctuates around 5 and 0.5 for OpenStack Swift and Dropbox,
respectively. This indicates that RTT takes a great part in the overall
performance, and its deterministic effect is especially prominent in
the low-depth cases. In summary, the overall performance (which
determines the user experience) is greatly affected by the RTT for
file access operation, as long as the accessed file is not in large depth
(e.g., d > 15); whereas the filesystem operation time is the main
factor for directory operations. Thus, it is especially worthwhile to
concentrate on directory operations optimization.

Performance summary. All the above results show that H2Cloud
is applicable to large-scale industrial scenarios due to its overall
excellent/acceptable performance and affordable overhead. Com-
pared with OpenStack Swift, H2Cloud achieves significantly faster
directory operations by orders of magnitude on handling RMDIR,
RENAME, MOVE, and LIST for large filesystems. File access and MKDIR
are slower than those of OpenStack Swift; but for these operations,
RTT is the main factor to affect the user experience. Neverthe-
less, they are still faster than Dropbox. Compared with Dropbox,
H2Cloud achieves similar performance in all aspects without using
a separate index.

6 CONCLUSION

This paper investigates the possibility of hosting users’ whole
filesystems in an object storage cloud, to avoid extra cost of main-
taining a separate index and meanwhile enable efficient filesystem
operations. In particular, to bridge the functional gap between the
flatness of the object storage cloud and the hierarchy of the direc-
tory structure, we design the Hierarchical Hash (H2) data structure
as well as its coupled algorithms. Also, we implement a prototype
system called H2Cloud based on OpenStack Swift to embody H2.
Both theoretical analysis and real-world experiments confirm the
effectiveness of our solution. The results demonstrate that H2Cloud

ICPP 2018, August 13–16, 2018, Eugene, OR, USA M. Zhao, Z. Li, E. Zhai et al.

is applicable to large-scale industrial scenarios due to its fast filesys-
tem operations and reduced maintenance overhead.

ACKNOWLEDGMENTS

This work is supported in part by the National Key R&D Program
of China under grant 2018YFB1004700, the High-Tech R&D Pro-
gram of China (“863 – China Cloud” Major Program) under grant
2015AA01A201, the National Natural Science Foundation of China
(NSFC) under grants 61471217, 61432002, 61632020 and 61572475.
C. Qian was supported by NSF CNS-1717948 and CNS-1750704.

REFERENCES
[1] Aliyun Object Storage Service 2018. (2018). https://intl.aliyun.com/product/oss.
[2] Amazon S3 (Simple Storage Service) 2018. (2018). http://aws.amazon.com/s3.
[3] Alysson Neves Bessani, Ricardo Mendes, Tiago Oliveira, Nuno Ferreira Neves,

Miguel Correia, Marcelo Pasin, and Paulo Verissimo. 2014. SCFS: A Shared
Cloud-backed File System. In Proc. of ATC. USENIX, 169–180.

[4] Scott A Brandt, Ethan L Miller, Darrell DE Long, and Lan Xue. 2003. Efficient
Metadata Management in Large Distributed Storage Systems. In Proc. of MSST.
IEEE, 290–298.

[5] Building a Consistent Hashing Ring (for OpenStack Swift) 2018. (2018). http:
//docs.openstack.org/developer/swift/ring_background.html.

[6] Camlistore 2018. (2018). https://camlistore.org.
[7] Thierry Titcheu Chekam, Ennan Zhai, Zhenhua Li, Yong Cui, and Kui Ren.

2016. On the Synchronization Bottleneck of OpenStack Swift-like Cloud Storage
Systems. In Proc. of INFOCOM. IEEE, 1–9.

[8] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value Store.
ACM SIGOPS operating systems review 41, 6 (2007), 205–220.

[9] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. 1987. Epidemic Algorithms for
Replicated Database Maintenance. In Proc. of PODC. ACM, 1–12.

[10] Idilio Drago, Marco Mellia, Maurizio M Munafo, Anna Sperotto, Ramin Sadre,
and Aiko Pras. 2012. Inside Dropbox: Understanding Personal Cloud Storage
Services. In Proc. of IMC. ACM, 481–494.

[11] Dropbox confirms that a bug within Selective Sync may have caused data loss
2014. (2014). https://news.ycombinator.com/item?id=8440985.

[12] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google File
System. In ACM SIGOPS Operating Systems Review, Vol. 37. ACM, 29–43.

[13] How a bug in Dropbox permanently deleted my 8000 photos 2014. (2014). https:
//news.ycombinator.com/item?id=8101579.

[14] John Howard, Michael Kazar, Sherri Menees, et al. 1988. Scale and Performance
in a Distributed File System. ACM Transactions on Computer Systems (TOCS) 6, 1
(1988), 51–81.

[15] John H Howard et al. 1988. An Overview of the Andrew File System. Carnegie
Mellon University, Information Technology Center.

[16] Yu Hua, Hong Jiang, Yifeng Zhu, Dan Feng, and Lei Tian. 2009. SmartStore: A new
Metadata Organization Paradigm with Semantic-Awareness for Next-Generation
File Systems. In Proc. of SC. ACM, 10.

[17] Yu Hua, Hong Jiang, Yifeng Zhu, Dan Feng, and Lei Tian. 2012. Semantic-
aware Metadata Organization Paradigm in Next-generation File Systems. IEEE
Transactions on Parallel and Distributed Systems 23, 2 (2012), 337–344.

[18] Felix Hupfeld, Toni Cortes, Björn Kolbeck, Jan Stender, Erich Focht, Matthias
Hess, Jesus Malo, Jonathan Marti, and Eugenio Cesario. 2008. The XtreemFS
Architecture-a Case for Object-based File Systems in Grids. Concurrency and
computation: Practice and experience 20, 17 (2008), 2049–2060.

[19] Inside the Magic Pocket 2018. (2018). http://blogs.dropbox.com/tech/2016/05/
inside-the-magic-pocket.

[20] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. 1997. Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide Web. In Proc. of
STOC. ACM, 654–663.

[21] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a Decentralized Struc-
tured Storage System. ACM SIGOPS Operating Systems Review 44, 2 (2010), 35–40.

[22] Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News 32, 4 (2001), 18–25.
[23] Paul J Leach, Michael Mealling, and Rich Salz. 2005. A Universally Unique

Identifier (UUID) URN Namespace. (2005).
[24] Zhenhua Li, Cheng Jin, Tianyin Xu, et al. 2014. Towards Network-level Efficiency

for Cloud Storage Services. In Proc. of IMC. ACM, 115–128.
[25] Zhenhua Li, Christo Wilson, Zhefu Jiang, Yao Liu, Ben Y Zhao, Cheng Jin, Zhi-Li

Zhang, and Yafei Dai. 2013. Efficient batched synchronization in dropbox-like
cloud storage services. In Proc. of Middleware. Springer, 307–327.

[26] Jinjun Liu, Dan Feng, Yu Hua, Bin Peng, and Zhenhua Nie. 2015. Using Prove-
nance to Efficiently Improve Metadata Searching Performance in Storage systems.
Future Generation Computer Systems 50 (2015), 99–110.

[27] Jake Luciani. 2012. Cassandra File System Design. DATATAX Blog [online]
http://www. datastax. com/dev/blog/cassandra-file-system-design (2012).

[28] Micheal Moore, David Bonnie, Becky Ligon, Mike Marshall, Walt Ligon, Nicholas
Mills, Elaine Quarles, Sam Sampson, Shuangyang Yang, and Boyd Wilson. 2011.
OrangeFS: Advancing PVFS. In Proc. of FAST poster. USENIX.

[29] Subramanian Muralidhar et al. 2014. f4: Facebook’s Warm BLOB Storage System.
In Proc. of OSDI. USENIX Association, 383–398.

[30] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen Grohsschmiedt,
and Mikael Ronström. 2017. HopsFS: Scaling Hierarchical File System Metadata
Using NewSQL Databases. In Proc. of FAST. USENIX, 89–104.

[31] Fatma Özcan, Nesime Tatbul, Daniel J Abadi, Marcel Kornacker, CMohan, Karthik
Ramasamy, and Janet Wiener. 2014. Are We Experiencing a Big Data Bubble?. In
Proc. of SIGMOD. ACM, 1407–1408.

[32] Leandro Pacheco, Raluca Halalai, Valerio Schiavoni, Fernando Pedone, Etienne
Riviere, and Pascal Felber. 2016. GlobalFS: A Strongly Consistent Multi-site File
System. In Proc. of SRDS. IEEE, 147–156.

[33] Swapnil Patil and Garth A Gibson. 2011. Scale and Concurrency of GIGA+: File
System Directories with Millions of Files. In Proc. of FAST. USENIX, 13–13.

[34] Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, and
Dave Hitz. 1994. NFS Version 3: Design and Implementation. In USENIX Summer.
Boston, MA, 137–152.

[35] T. S. Pillai et al. 2014. All File Systems Are Not Created Equal: On the Complexity
of Crafting Crash-Consistent Applications. In Proc. of OSDI. 433–448.

[36] Gerald Popek and Bruce J Walker. 1985. The LOCUS Distributed System Architec-
ture. The MIT press.

[37] Sean Quinlan and Sean Dorward. 2002. Venti: A New Approach to Archival
Storage. In Proc. of FAST. 89–101.

[38] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
2001. A Scalable Content-Addressable Network. In Proc. of SIGCOMM. ACM.

[39] Sean Rhea, Russ Cox, and Alex Pesterev. 2008. Fast, Inexpensive Content-
Addressed Storage in Foundation. In Proc. of ATC. USENIX Association, 143–156.

[40] Mahadev Satyanarayanan, James Kistler, and Kumarand others. 1990. Coda: A
Highly Available File System for a Distributed Workstation Environment. IEEE
Trans. Comput. 39, 4 (1990), 447–459.

[41] Konstantin Shvachko and Yuxiang Chen. 2017. Scaling Namespace Operations
with Giraffa File System. USENIX ;log in: 42, 2 (2017), 27–30.

[42] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The Hadoop Distributed File System. In Proc. of MSST. IEEE, 1–10.

[43] Mandayam C Srivas et al. 2017. Map-Reduce Ready Distributed File System.
(2017). US Patent App. 15/668,666.

[44] Michael Stonebraker. 2012. NewSQL: An Alternative to NoSQL and Old SQL for
New OLTP Apps. Commun. ACM (2012), 07–06.

[45] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and
Geoff Peck. 1996. Scalability in the XFS File System. In Proc. of ATC. USENIX.

[46] The Open Group Base Specifications Issue 7–IEEE Std 1003.1 2018. (2018). http:
//pubs.opengroup.org/onlinepubs/9699919799/.

[47] Alexander Thomson and Daniel J Abadi. 2015. CalvinFS: Consistent WAN Repli-
cation and Scalable Metadata Management for Distributed File Systems. In Proc.
of FAST. USENIX, 1–14.

[48] Niraj Tolia, Michael Kozuch, Mahadev Satyanarayanan, Brad Karp, Thomas
Bressoud, and Adrian Perrig. 2003. Opportunistic Use of Content Addressable
Storage for Distributed File Systems. In Proc. of ATC. 127–140.

[49] Michael Vrable, Stefan Savage, and Geoffrey M Voelker. 2009. Cumulus: Filesys-
tem Backup to the Cloud. ACM Transactions on Storage (TOS) 5, 4 (2009), 14.

[50] Michael Vrable, Stefan Savage, and Geoffrey M Voelker. 2012. Bluesky: A Cloud-
backed File System for the Enterprise. In Proc. of FAST. USENIX, 19–19.

[51] H. Wang, R. Shea, F. Wang, and J. Liu. 2012. On the Impact of Virtualization on
Dropbox-like Cloud File Storage/Synchronization Services. In Proc. of IWQoS.

[52] Sage AWeil, Scott A Brandt, Ethan LMiller, Darrell DE Long, and CarlosMaltzahn.
2006. Ceph: A Scalable, High-Performance Distributed File System. In Proc. of
OSDI. USENIX Association, 307–320.

[53] Sage AWeil, Kristal T Pollack, Scott A Brandt, and Ethan L Miller. 2004. Dynamic
Metadata Management for Petabyte-Scale File Systems. In Proc. of SC. IEEE.

[54] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson, Brian Mueller, Jason
Small, Jim Zelenka, and Bin Zhou. 2008. Scalable Performance of the Panasas
Parallel File System. In Proc. of FAST. USENIX, 17–33.

[55] Why Dropbox decided to drop AWS and build its own infrastructure and network
2017. (2017). https://techcrunch.com/2017/09/15/why-dropbox-decided- to-drop-
aws-and-build-its-own-infrastructure-and-network.

[56] Y. Yu, D. Belazzougui, C. Qian, and Q. Zhang. 2018. Memory-efficient and Ultra-
fast Network Lookup and Forwarding using Othello Hashing. IEEE/ACM Trans-
actions on Networking (2018).

[57] Yupu Zhang, Chris Dragga, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. 2014. ViewBox: Integrating Local File Systems with Cloud Storage
Services. In Proc. of FAST. USENIX, 119–132.

